autori
Autori e affiliazioni
Francesca VannucchiAlessandra FranciniEmail autoreErika C. PierattiniAndrea RaffaelliLuca Sebastiani
1.
2.
ricerca articolo
Primo online: 02 luglio 2019
4
azioni
22
download
Astratto
Gli ftalati sono micro-inquinanti di grande preoccupazione a causa dei loro effetti negativi sul funzionamento degli ecosistemi e sulla salute umana. Grazie alla sua capacità di assorbimento e accumulo di inquinanti organici, il clone di Populus alba L. "Villafranca" potrebbe essere un buon candidato per ridurre gli impatti derivati dalla persistenza di tali composti nell'ambiente. Abbiamo studiato la risposta e l'assorbimento di dioctyl phthalate (DOP) da parte del pioppo, coltivato in condizioni idroponiche, per 21 giorni con 0, 40 e 400 μg L-1 di d4-DOP. Le piante trattate, dopo 21 giorni di 400 μg di L-1 d4-DOP, hanno mostrato un aumento della biomassa secca delle radici (+ 29%) a scapito delle parti aeree (-8%) rispetto al controllo. Lo sviluppo della radice potrebbe essere sostenuto dall'aumento dell'uptake di Mg da parte del pioppo. L'analisi LC-MS / MS ha dimostrato l'assorbimento e l'accumulo nelle radici di d4-DOP a partire dal primo giorno (rispettivamente 3,5 ± 3,29 e 7,1 ± 3,28 in 40 e 400 μg L-1 d4-DOP), nonostante la volatilizzazione di d4-DOP fosse osservato dalla soluzione nutritiva. L'interazione chimica tra d4-DOP e Zn si è verificata nelle radici di piante trattate con l'alta concentrazione di d4-DOP, senza limitare la concentrazione di Zn nelle foglie. I risultati confermano l'elevata tolleranza del clone "Villafranca" allo xenobiotico e suggeriscono la capacità del pioppo nell'assorbimento e accumulo di d4-DOP a livello della radice.
Populus alba dioctyl phthalate uptake from contaminated water
Abstract
Phthalates are micro-pollutants of great concern due to their negative effects on ecosystem functioning and human health. Thanks to its capability in uptake and accumulation of organic pollutants, Populus alba L. “Villafranca” clone could be a good candidate for reducing the impacts derived by the persistence of such compounds in the environment. We investigated plant response and uptake of dioctyl phthalate (DOP) by poplar, grown in hydroponics condition, for 21 days with 0, 40, and 400 μg L−1 of d4-DOP. Treated plants, after 21 days of 400 μg L−1 d4-DOP, showed an increase in root dry biomass (+ 29%) at the expense of aerial parts (− 8%) compared with control. The root development could be sustained by the increase of Mg uptake by poplar. LC-MS/MS analysis demonstrated the uptake and accumulation in roots of d4-DOP starting from day one (3.5 ± 3.29 and 7.1 ± 3.28 in 40 and 400 μg L−1 d4-DOP respectively), despite volatilization of d4-DOP was observed from nutritive solution. The chemical interaction between d4-DOP and Zn occurred in roots of plants treated with the high d4-DOP concentration, without limiting the Zn concentration in leaves. Results confirm the high tolerance of “Villafranca” clone to xenobiotic and suggest the poplar capability in d4-DOP uptake and accumulation at root level.
Keywords
DOP Micro-pollutants Phthalates Poplar Nutrients VolatilityNotes
References
- Abdel daiem MM, Rivera-Utrilla J, Ocampo-Pérez R, Méndez-Díaz JD, Sánchez-Polo M (2012) Environmental impact of phthalic acid esters and their removal from water and sediments by different technologies–a review. J Environ Manag 109:164–178CrossRefGoogle Scholar
- Arnon DI, Hoagland DR (1940) Crop production in artificial culture solutions and in soils with special reference to factors influencing yields and absorption of inorganic nutrients. Soil Sci 50:463–485Google Scholar
- Baca SG (2013) Zinc(II) complexes based on ortho-phthalic acid and ancillary N-donor ligands. ChemInform. https://doi.org/10.1002/chin.201341223
- Baca SG, Filippova IG, Gherco OA, Gdaniec M, Simonov YA, Gerbeleu NV, Franz P, Basler R, Decurtins S (2004) Nickel (II)-, cobalt (II)-, copper (II)-, and zinc (II)-phthalate and 1-methylimidazole coordination compounds: synthesis, crystal structures and magnetic properties. Inorg Chim Acta 357(12):3419–3429CrossRefGoogle Scholar
- Briggs GG, Bromilow RH, Evans AA (1982) Relationships between lipophilicity and root uptake and translocation of non-ionized chemicals by barley. Pestic Sci 13:495–504CrossRefGoogle Scholar
- Cai QY, Mo CH, Zeng QY, Wu QT, Férard JF, Antizar-Ladislao B (2008) Potential of Ipomoea aquatica cultivars in phytoremediation of soils contaminated with di-n-butyl phthalate. Environ Exp Bot 62(3):205–211CrossRefGoogle Scholar
- Chen WC, Huang HC, Wang YS, Yen JH (2011) Effect of benzyl butyl phthalate on physiology and proteome characterization of water celery (Ipomoea aquatica Forsk.). Ecotoxicol Environ Saf 74(5):1325–1330CrossRefGoogle Scholar
- Chen HL, Yao J, Wang F (2013) Soil microbial and enzyme properties as affected by long-term exposure to phthalate esters. Adv Mater Res 726:3653–3656CrossRefGoogle Scholar
- Chi J (2009) Phthalate acid esters in Potamogeton crispus L. from Haihe River China. Chemosphere 77(1):48–52CrossRefGoogle Scholar
- Clara M, Windhofer G, Hartl W, Braun K, Simon M, Gans O, Scheffknecht C, Chovanec A (2010) Occurrence of phthalates in surface runoff, untreated and treated wastewater and fate during wastewater treatment. Chemosphere 78(9):1078–1084CrossRefGoogle Scholar
- Fu X, Du Q (2011) Uptake of di-(2-ethylhexyl) phthalate of vegetables from plastic film greenhouses. J Agric Food Chem 59(21):11585–11588CrossRefGoogle Scholar
- Gani KM, Tyagi VK, Kazmi AA (2017) Occurrence of phthalates in aquatic environment and their removal during wastewater treatment processes: a review. Environ Sci Pollut Res Int 24(21):17267–17284CrossRefGoogle Scholar
- Gao D, Li Z, Wen Z, Ren N (2014) Occurrence and fate of phthalate esters in full-scale domestic wastewater treatment plants and their impact on receiving waters along the Songhua River in China. Chemosphere 95:24–32CrossRefGoogle Scholar
- Gao M, Qi Y, Song W, Xu H (2016) Effects of di-n-butyl phthalate and di (e-ethylhexyl) phthlate on the growth, photosynthesis, and chlorophyll fluorescence of wheat seedlings. Chemosphere 151:76–83CrossRefGoogle Scholar
- Giachetti G, Sebastiani L (2006) Metal accumulation in poplar plant grown with industrial wastes. Chemosphere 64(3):446–454CrossRefGoogle Scholar
- Hafsi C, Debez A, Abdelly C (2014) Potassium deficiency in plants: effects and signaling cascades. Acta Physiol Plant 36(5):1055–1070CrossRefGoogle Scholar
- He L, Gielen G, Bolan NS, Zhang X, Qin H, Huang H, Wang H (2015) Contamination and remediation of phthalic acid esters in agricultural soils in China: a review. Agron Sustain Dev 35(2):519–534CrossRefGoogle Scholar
- Hermans C, Vuylsteke M, Coppens F, Cristescu SM, Harren FJ, Inzé D, Verbruggen N (2010) Systems analysis of the responses to long-term magnesium deficiency and restoration in Arabidopsis thaliana. New Phytol 187(1):132–144CrossRefGoogle Scholar
- Iori V, Pietrini F, Zacchini M (2012) Assessment of ibuprofen tolerance and removal capability in Populus nigra L. by in vitro culture. J Hazard Mater 229-230:217–223CrossRefGoogle Scholar
- Katsikantami I, Sifakis S, Tzatzarakis MN, Vakonaki E, Kalantzi OI, Tsatsakis AM, Rizos AK (2016) A global assessment of phthalates burden and related links to health effects. Environ Int 97:212–236CrossRefGoogle Scholar
- Krell HW, Sandermann H (1984) Plant biochemistry of xenobiotics purification and properties of a wheat esterase hydrolyzing the plasticizer chemical, bis(2-ethylhexy1)phthalate. Eur J Blochem 143(1):57–62CrossRefGoogle Scholar
- Li C, Chen J, Wang J, Han P, Luan Y, Ma X, Lu A (2016) Phthalate esters in soil, plastic film, and vegetable from greenhouse vegetable production bases in Beijing, China: concentrations, sources, and risk assessment. Sci Total Environ 568:1037–1043CrossRefGoogle Scholar
- Liang DW, Zhang T, Fang HH, He J (2008) Phthalates biodegradation in the environment. Appl Microbiol Biotechnol 80(2):183–198CrossRefGoogle Scholar
- Liao CS, Yen JH, Wang YS (2006) Effects of endocrine disruptor di-n-butyl phthalate on the growth of Bok choy (Brassica rapa subsp. chinensis). Chemosphere 65:1715–1722CrossRefGoogle Scholar
- Lloyd G, McCown B (1980) Commercially-feasible micropropagation of mountain laurel, Kolmialatifolia, by use of shoot tip culture. Combined Proceedings of International Plant Propagators’ Society 30:421–427Google Scholar
- Luo Y, Guo W, HaoNgo H, DucNghiem L, IbneyHai F, Zhang J, Liang S, Wang XC (2014) A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ 473:619–641CrossRefGoogle Scholar
- Ma T, Luo Y, Christie P, Teng Y, Liu W (2012) Removal of phthalic esters from contaminated soil using different cropping systems: a field study. Eur J Soil Biol 50:76–82CrossRefGoogle Scholar
- Ma T, Christie P, Teng Y, Luo Y (2013) Rape (Brassica chinensis L.) seed germination, seedling growth, and physiology in soil polluted with di-n-butyl phthalate and bis (2-ethylhexyl) phthalate. Environ Sci Pollut Res 20(8):5289–5298CrossRefGoogle Scholar
- Magdouli S, Daghrir R, Brar SK, Drogui P, Tyagi RD (2013) Di 2-ethylhexylphtalate in the aquatic and terrestrial environment: a critical review. Environ Manag 127:36–49Google Scholar
- Markert B (1992) Presence and significance of naturally occurring chemical elements of the periodic system in the plant organism and consequences for future investigations on inorganic environmental chemistry in ecosystems. Vegetatio 103(1):1–30Google Scholar
- Marmiroli M, Pietrini F, Maestri E, Zacchini M, Marmiroli N, Massacci A (2011) Growth, physiological and molecular traits in Salicaceae trees investigated for phytoremediation of heavy metals and organics. Tree Physiol 31(12):1319–1334CrossRefGoogle Scholar
- Martínez-Hernández V, Leal M, Meffe R, De Miguel Á, Alonso-Alonso C, De Bustamante I et al (2018) Removal of emerging organic contaminants in a poplar vegetation filter. J Hazard Mater 342:482–491CrossRefGoogle Scholar
- Miller EL, Nason SL, Karthikeyan KG, Pedersen JA (2016) Root uptake of pharmaceuticals and personal care product ingredients. Environ Sci Technol 50:525–541CrossRefGoogle Scholar
- Net S, Sempéré R, Delmont A, Paluselli A, Ouddane B (2015) Occurrence, fate, behavior and ecotoxicological state of phthalates in different environmental matrices. Environ Sci Technol 49(7):4019–4035CrossRefGoogle Scholar
- Niu Y, Jin G, Zhang YS (2014) Root development under control of magnesium availability. Plant Signal Behav 9(9):e29720CrossRefGoogle Scholar
- Oca ML, Rubio L, Sarabia LA, Ortiz MC (2016) Dealing with the ubiquity of phthalates in the laboratory when determining plasticizers by gas chromatography/mass spectrometry and PARAFAC. J Chromatogr A 1464:124–140CrossRefGoogle Scholar
- Pierattini EC, Francini A, Raffaelli A, Sebastiani L (2016a) Degradation of exogenous caffeine by Populus alba and its effects on endogenous caffeine metabolism. Environ Sci Pollut Res 23(8):7298–7307CrossRefGoogle Scholar
- Pierattini EC, Francini A, Raffaelli A, Sebastiani L (2016b) Morpho-physiological response of Populus alba to erythromycin: a timeline of the health status of the plant. Sci Total Environ 569–570:540–547CrossRefGoogle Scholar
- Pierattini EC, Francini A, Huber C, Sebastiani L, Schröder P (2018) Poplar and diclofenac pollution: a focus on physiology, oxidative stress and uptake in plant organs. Sci Total Environ 636:944–952CrossRefGoogle Scholar
- Pilipović A, Orlović S, Rončević S, Nikolić N, Župunski M, Spasojević J (2015) Results of selection of poplars and willows for water and sediment phytoremediation. Agricult Forest 61:205–211Google Scholar
- Potters G, Pasternak TP, Guisez Y, Palme KJ, Jansen MA (2007) Stress-induced morphogenic responses: growing out of trouble? Trends Plant Sci 12(3):98–105CrossRefGoogle Scholar
- Romè C, Romeo S, Francini A, Andreucci A, Sebastiani L (2016a) Leaves position in Populus alba Villafranca clone reveals a strategy towards cadmium uptake response. Plant Growth Regul 79(3):355–366CrossRefGoogle Scholar
- Romè C, Huang XY, Danku J, Salt DE, Sebastiani L (2016b) Expression of specific genes involved in Cd uptake, translocation, vacuolar compartmentalization and recycling in Populus alba Villafranca clone. Indian J Plant Physiol 202:83–91CrossRefGoogle Scholar
- Romeh AA (2013) Diethyl phthalate and dioctyl phthalate in Plantago major L. Afr J Agric Res 8(32):4360–4364Google Scholar
- Romeo S, Francini A, Ariani A, Sebastiani L (2014) Phytoremediation of Zn: identify the diverging resistance, uptake and biomass production behaviours of poplar clones under high zinc stress. Water Air Soil Pollut 225:1813–1819CrossRefGoogle Scholar
- Romeo S, Francini A, Sebastiani L, Morabito D (2017) High Zn concentration does not impair biomass, cutting radial growth, and photosynthetic activity traits in Populus albaL. J Soils Sediments 17(5):1394–1402CrossRefGoogle Scholar
- Sandermann H (1994) Higher plant metabolism of xenobiotics: the ‘green liver’ concept. Pharmacogenetics 4(5):225–241CrossRefGoogle Scholar
- Schröder P, Navarro-Aviñó J, Azaizeh H, Goldhirsh AG, DiGregorio S, Komives T, Langergraber G, Lenz A, Maestri E, Memon AR, Ranalli A, Sebastiani L, Smrcek S, Vanek T, Vuilleumier S, Wissing F (2007) Using phytoremediation technologies to upgrade waste water treatment in Europe. Environ Sci Pollut Res Int 14(7):490–497CrossRefGoogle Scholar
- Stasinakis AS (2012) Review on the fate of emerging contaminants during sludge anaerobic digestion. Bioresour Technol 121:432–440CrossRefGoogle Scholar
- Sun J, Wu X, Gan J (2015) Uptake and metabolism of phthalate esters by edible plants. Environ Sci Technol 49:8471–8478CrossRefGoogle Scholar
- Vaz JLL, Duc G, Petit-Ramel M, Faure R, Vittori O (1996) Cd (II) complexes with phthalic acids: solution study and crystal structure of cadmium (II) phthalate hydrate. Can J Chem 74(3):359–364CrossRefGoogle Scholar
- Visscher AM, Paul AL, Kirst M, Guy CL, Schuerger AC, Ferl RJ (2010) Growth performance and root transcriptome remodeling of Arabidopsis in response to Mars-like levels of magnesium sulfate. PLoS One 5:e12348CrossRefGoogle Scholar
- Wu Z, Zhang X, Wu X, Shen G, Du Q, Mo C (2013) Uptake of di (2-ethylhexyl) phthalate (DEHP) by the plant Benincasa hispida and its use for lowering DEHP content of intercropped vegetables. J Agric Food Chem 61(22):5220–5225CrossRefGoogle Scholar
- Zavoda J, Cutright T, Szpak J, Fallon E (2001) Uptake, selectivity, and inhibition of hydroponic treatment of contaminants. J Environ Eng 127(6):502–508CrossRefGoogle Scholar
- Zeng QY, Mo CH, Cai QY, Mo C, Wen R (2010) Root morphological and physiological characteristics of two genetypes of Brassica parachinensis and their effect on di (2-ethylhexil) phtalate (DEHP) uptake. Acta Sci Vet 30:1280–1285Google Scholar
- Zhang Y, Zhang H, Sun X, Wang L, Du N, Tao Y, Sun G, Erinle KO, Wang P, Zhou C, Duan S (2016) Effect of dimethyl phthalate (DMP) on germination, antioxidant system, and chloroplast ultrastructure in Cucumis sativus L. Environ Sci Pollut Res 23(2):1183–1192CrossRefGoogle Scholar
- Zhao HM, Du H, Xiang L, Li YW, Li H, Cai QY et al (2016) Physiological differences in response to di-n-butyl phthalate (DBP) exposure between low-and high-DBP accumulating cultivars of Chinese flowering cabbage (Brassica parachinensis L.). Environ Pollut 208:840–849CrossRefGoogle Scholar
- Zhou X, Cui K, Zeng F, Li S, Zeng Z (2016) A simple and selective method for determination of phthalate biomarkers in vegetable samples by high pressure liquid chromatography–electrospray ionization-tandem mass spectrometry. Food Chem 200:336–342CrossRefGoogle Scholar
Copyright information
© Springer-Verlag GmbH Germany, part of Springer Nature 2019
Nessun commento:
Posta un commento